Mycofix[®]: The Definitive Protection against Mycotoxins

PM Mycotoxin Risk Management Zanetta, Sander and Wolfgang

Did you know that...

Mycotoxin Analytical Methods

ELISA

Quantification of specific mycotoxins in given matrices

Fast Inexpensive Raw materials only

HPLC

Quantification of single toxins at low concentrations

dsm-firmenich (

Classified Personnel Information

Fullfils legal requirements

More time consuming More expensive

LC-MS/MS:

Spectrum 380[®] and Spectrum Top[®] 50

Simultaneous detection of multiple toxins in a wide variety of commodities

\oslash

Sensitive method

Suitable for various feed matrices Detection of masked & emerging mycotoxins

Highly qualified operator needed More expensive

Spectrum Top® 🌘

Grain Mycotoxin survey 2023 \rightarrow We change the Method

ELISA¹:

Quantification of specific mycotoxins in given matrices

• Inexpensive

- Raw materials only
- Many samples needed (only one ELSIA Day)
- No NIV ELSIA test
- Screening analyzes (no detailed Value)
- High LOD³

¹ELISA = Enzyme-linked Immunosorbent Assay
 ²LC-MS/MS= Liquid Chromatography-Tandem Mass Spectrometry
 ³Limit of Detection

LC-MS/MS²: Spectrum Top[®]

Simultaneous detection of multiple toxins in a wide variety of grains

- 4 different Analysis packages
 - DON + ZEN
 - DON + ZEN + T2 + NIV
 - DON + ZEN + NIV + FUM B1/B2
 - DON + ZEN + AFLAs + FUM B1/B2
- Very Sensitive method
- Low LOD³ (Limit of detection)
- Qualitative analysis
- Suitable for various feed matrices
- Less work (lead time 5 working days)

dsm-firmenich

Spectrum Top® 50

Method was developed by Romer Labs

✓ Analysis is done locally: Romer Labs Singapore

- ✓ More than 50 different mycotoxins and metabolites
 - frequently occurring mycotoxins
 - masked mycotoxins
 - emerging mycotoxins
- Product package availabe

A ANAGE	a a	peetryn	Ó			0	DS	м	
							BRIGHT SC	IENCE. BRIGH	ITER LIVING.
Client: Erber	Biotech (Tha	iland) Co. Ltd.					Date: 22 Fe	ebruary 202	2
Address:									
Species: Pig									
DSM contac	person: CCF	I, NSS							
		Spectrum	Top 50: M	ulti – Mycot	ovin Analy	sis AT-264	38		
results are ba Table 1 - My	sed on the or cotoxin analy	iginal weight of t sis results of sar	the sample.	terpretation fo	r the specie	indicated			
Sample ID	Sample Type	Species	Afla (µg/kg)	ZEN + Metabolites (μg/kg)	Type B Trichos (µg/kg) e.g. DON	Type A Trichos (µg/kg) e.g. T-2	FUM (µg/kg)	OTA (µg/kg)	Ergot Alkaloids (µg/kg)
AT-26438-001	Corn	Pig	1	nd	nd	nd	477	nd	nd
AT-26438-001 AT-26438-002	Corn	Pig	1	nd nd	nd nd	nd nd	477 1658	nd nd	nd nd
AT-26438-001 AT-26438-002 AT-26438-003	Corn Corn Corn	Pig Pig Pig	1 1 nd	nd nd nd	nd nd nd	nd nd nd	477 1658 1179	nd nd nd	nd nd nd
AT-26438-001 AT-26438-002 AT-26438-003 AT-26438-004	Corn Corn Corn Corn	Pig Pig Pig Pig	1 1 nd 1	nd nd nd	nd nd nd nd	nd nd nd	477 1658 1179 552	nd nd nd	nd nd nd nd
AT-26438-001 AT-26438-002 AT-26438-003 AT-26438-004 AT-26438-005	Corn Corn Corn Corn Corn	Pig Pig Pig Pig Pig	1 1 nd 1 23	nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd	477 1658 1179 552 181	nd nd nd nd	nd nd nd nd nd
AT-26438-001 AT-26438-002 AT-26438-003 AT-26438-004 AT-26438-005 AT-26438-006	Corn Corn Corn Corn Corn Corn	Pig Pig Pig Pig Pig Pig	1 1 1 23 nd	nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd	477 1658 1179 552 181 950	nd nd nd nd nd	nd nd nd nd nd
AT-26438-001 AT-26438-002 AT-26438-003 AT-26438-004 AT-26438-005 AT-26438-006 AT-26438-007	Corn Corn Corn Corn Corn Corn Corn	Pig Pig Pig Pig Pig Pig	1 1 1 23 nd nd	nd nd nd nd nd nd	nd nd nd nd nd nd	nd nd nd nd nd nd	477 1658 1179 552 181 950 371	nd nd nd nd nd	nd nd nd nd nd nd nd
AT-26438-001 AT-26438-002 AT-26438-003 AT-26438-004 AT-26438-005 AT-26438-005 AT-26438-006 AT-26438-007 AT-26438-008	Corn Corn Corn Corn Corn Corn Corn Corn	Pig Pig Pig Pig Pig Pig Pig	1 1 1 23 nd nd nd nd	nd nd nd nd nd nd nd	nd nd nd nd nd nd nd	nd nd nd nd nd nd nd	477 1658 1179 552 181 950 371 68	nd nd nd nd nd nd	nd nd nd nd nd nd nd nd
AT-26438-001 AT-26438-002 AT-26438-003 AT-26438-004 AT-26438-005 AT-26438-006 AT-26438-007 AT-26438-008 AT-26438-009	Corn Corn Corn Corn Corn Corn Corn Corn	Pig Pig Pig Pig Pig Pig Pig Pig	1 1 23 nd nd nd nd nd	nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd	477 1658 1179 552 181 950 371 68 3426	nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd
AT-26438-001 AT-26438-002 AT-26438-003 AT-26438-004 AT-26438-005 AT-26438-006 AT-26438-007 AT-26438-008 AT-26438-009 AT-26438-010	Corn Corn Corn Corn Corn Corn Corn Corn	Pig Pig Pig Pig Pig Pig Pig Pig	1 nd 23 nd nd nd nd 29	nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd	477 1658 1179 552 181 950 371 68 3426 1940	nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd
T-26438-001 T-26438-002 T-26438-004 T-26438-004 T-26438-006 T-26438-006 T-26438-007 T-26438-008 T-26438-009 T-26438-010 T-26438-011	Corn Corn Corn Corn Corn Corn Corn Corn	Pig Big Pig Big Big Big Big Big Big Big Big	1 1 23 nd nd nd nd 29 nd	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd	477 1658 1179 552 181 950 371 68 3426 1940 1075	nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd

- ✓ Turn around time: 10 working days upon sample receival in Romer Labs SG
- Interpreted report with risk assessment (species-specific) and concise information about mycotoxins analyzed

Spectrum 380[®] – Get the full picture

- Method was developed by our cooperation partners at the Center for Analytica. Chemistry at IFA-Tulln
- ✓ Analysis is done in Tulln in Austria
- ✓ More than 800 different mycotoxins and metabolites
- frequently occurring mycotoxins
- masked mycotoxins
- emerging mycotoxins & fungal metabolites
- plant toxins and metabolites (incl. phytoestrogens)
- bacterial toxins and metabolites
- on request: veterinary drug residues, pesticides
- ✓ Turn around time: 10–15 working days upon sample receival at the university in Austria
- 2 reports: Interpreted report with risk assessment (species-specific) and an independent report of the university

Spectrum Top 50 Procedure – how it work

Facts in numbers

Results are represented in numbers and colors

Tested against > 50 different mycotoxins and metabolites

- Frequently occurring 1. mycotoxins
- AFLA, DON, ZON, FUM, OTA, T-2, HT-2, Ergots
- 2. Masked mycotoxins
- Glycosylated
- 3. Emerging mycotoxins
 - Not enough data yet to define thresholds (Moniliformin's ..)

Client: Vazr Address: M Species: Ca	niskiu ZUB ikalaukos km. I ttle/Calf	T 00000 K-1					DRIGHT SC	ENCE. BRIGE	ITER LIVING
Address: M Species: Ca	ikalaukos km. I	T C0000 K-1					Date: 18 Fe	bruary 202	2
Species: Ca	ttlo/Calt	LI 69320 Kalvarij	os sav. Lithu	Jania					
	the/can								
Dawr Collica	LE PEISON. EPA								
		Spectrum	Top 50: M	ulti – Mycote	oxin Analy	sis AT-264	121		
The followin	g tables give ar	overview on th	e nositively	identified myco	toxins and t	he respectiv	·P		
concentratio	ins (ppb = $\mu g/k$	g). In case of hig	h moisture o	content, sample	s are dried c	rior to anal	vsis and		
results are b	ased on the ori	ginal weight of t	he sample.	ionicent, bumph	o dre dried p		Join Ging		
Table 1 - My	cotoxin analys	sis results of san	ples and in	terpretation fo	r the species	indicated			
Sample ID	Sample Type	Species	Afla (µg/kg)	ZEN + Metabolites (μg/kg)	Type B Trichos (μg/kg) e.g. DON	Type A Trichos (µg/kg) e.g. T-2	FUM (µg/kg)	OTA (µg/kg)	Ergot Alkaloids (µg/kg)
AT-26421-001	Ruminant	Cattle/Calf	nd	29	297	15			nd
	Feed	addiner and a second second		22	307	15	na	na	ind
AT-26421-002	Corn silage	Cattle/Calf	nd	106	1561	268	nd 30	nd	nd
AT-26421-002 Explanation	Corn silage	Cattle/Calf	nd	106	1561	268	nd 30	nd	nd
AT-26421-002 Explanation Feature	of Table Explanation	Cattle/Calf	nd	106	1561	268	nd 30	nd	nd
AT-26421-002 Explanation Feature	Feed Corn silage of Table Explanation Low risk for spe- (Cattle/Calf: Afla 2: High risk for spe (Cattle/Calf: Afla 2: High risk for spe	Cattle/Calf cies type for majoo 2, ZEN <100, Type B species type for n <4, ZEN 100-<250, T cies type for majo X ZEN 250, Type B	nd r mycotoxins <300, Type A < najor mycoto: ype B 300-<100 r mycotoxins 21000 Type A	106 100, FUM <2000, C xins 00, Type A 100-<40 2400, FUM 24000 0	1561 TA <80, Ergot < 0, FUM 2000-<40	268 268 100) 2000, OTA 80-<5	nd 30 500, Ergot 100-<	nd	nd
AT-26421-002 Explanation Feature	Feed Corn silage of Table Explanation Low risk for spe (Cattle/Calf. Afla 2: High risk for spe (Cattle/Calf. Afla 2: High risk for spe (Cattle/Calf. Afla 2:	Cattle/Calf cies type for majou 2, ZEN <100, Type B species type for majo 4, ZEN 200-250, T cies type for majo 4, ZEN 2250, Type B me metabolites have	nd r mycotoxins <300, Type A < najor mycoto: ype B 300-<100 r mycotoxins >1000, Type A : no defined low	106 100, FUM <2000, C xins 200, Type A 100-<40 2400, FUM 24000, (, medium and high	1561 TA <80, Ergot < 0, FUM 2000-<4/ DTA ≥500, Ergot alues. These ar	100) 268 100) 2000, OTA 80~<5 ≥400) e colored accor	nd 30 500, Ergot 100-<	nd nd 400) son with all pre-	nd nd
AT-26421-002 Explanation Feature	Feed Corn silage of Table Explanation Low risk for spe (Catte/Calf: Afla < Medium risk for Spe (Catte/Calf: Afla 2 High risk for spe (Catte/Calf: Afla 2 For tables below se Below the medi	Cattle/Calf cies type for major 2, ZEN <100, Type B species type for major 4, ZEN 100-250, Type B me metabolites have an of positive valu	nd r mycotoxins <300, Type A - ajor mycoto: ype B 300-<100 r mycotoxins ≥1000, Type A - ino defined low es for all prev	100, FUM <2000, C xins 2400, FUM >400, TUM >400, medium and high + /rously tested sar	1561 TA <80, Ergot < 0, FUM 2000-<4/ DTA ≥500, Ergot ralues. These ar noles	100) 000, OTA 80-<5 >400) e colored accor	nd 30 600, Ergot 100-<	nd nd 400) son with all pre-	rious results:
AT-26421-002 Explanation Feature	Feed Corn silage of Table Explanation Low risk for spe (Cattle/Calf. Afla ~) Medium risk for (Cattle/Calf. Afla ~) For tables below s Below the medi Above the medi	Cattle/Calf cies type for major 2, ZEN < 100, Type B species type for major 4, ZEN 100~250, Type B more metabolites have an of positive valu an of positive valu	nd r mycotoxins <300, Type A - ajor mycoto: ype B 300-<100 r mycotoxins >1000, Type A - >1000, Type A - s for all prev- es for all prev-	106 100, FUM <2000, C xins 20, Type A 100-40 2400, FUM 24000, medium and high riously tested sar	1561 TA <80, Ergot < D, FUM 2000-<40 DTA ≥500, Ergot values. These ar nples nples	100) 000, OTA 80-<5 ≥400) e colored accor	nd 30 600, Ergot 100-<	nd nd 400) son with all pre-	nd nd
AT-26421-002 Explanation Feature	reed Corn silage of Table Explanation Low risk for spe (Cattle/Calf. Afla ⇒ Medium risk for (Cattle/Calf. Afla ⇒ For tables below s Below the medi Above the medi In top 10% of th	Cattle/Calf cies type for major 2, ZEN <100, Type B species type for m 4, ZEN 100-Z50, Type B cies type for major t, ZEN x250, Type B come metabolites have an of positive valu an of positive valu	nd r mycotoxins <300, Type A < no defined low es for all prev es for all prev ye values for	106 100, FUM <2000, C xins 20, Type A 100-<40 >400, FUM >4000, (medium and high riously tested sar all previously test	TA <80, Ergot < D, FUM 2000-<40 DTA ≥500, Ergot ADTA ≥500, Ergot nples nples ted samples	100) 000, OTA 80-<5 ≥400) e colored accor	nd 30 500, Ergot 100-<	na nd 400)	nd

not detected (below the Limit of Detection)

Sample: AT-2	Sample: AT-26421-002 Cattle/Calf (Corn silage) VZ 02 MaysSI & Mays grain										
Substance	- Value (μg/kg)	LOD (µg/kg)	LOQ (µg/kg)	Description							
Zearalenone and met	abolites	(zearalenon	e, alpha-zear	alenol, beta zearalenol, zearalanol)							
Zearalenone	106.0	5	25	Zearalenone is estrogenic, acting like the sex hormone estradiol thereby interfering with fertility and sexual development of animals. It is also hepatotoxic, hematotoxic, immunotoxic and genotoxic.							
Type B trichothecene	s	(deoxynivale	enol, 3-acety	deoxynivalenol, 15-acetyldeoxynivalenol, DON-3-glucoside, nivalenol, 15-acteoxyscirpenol, fusarenon X)							
Deoxynivalenol	1393.4	75	250	Deoxynivalenol induces emesis and feed refusal resulting in reduced weight gain. Other effects include immunotoxicity, hematotoxicity and myelotoxicity, as well as reproductive toxicity. It furthermore causes intestinal lesions and compromises the intestinal barrier function.							
DON-3-glucoside	167.5	15	50	Deoxynivalenol-3-glucoside is a masked mycotoxin. It is converted back to deoxynivalenol in the gastrointestinal tract of mammals.							
Type A trichothecene	s	(T-2 toxin, H	T-2 toxin, T-3	2 tetraol, T-2 triol, diacetoxyscirpenol, neosolaniol)							
HT-2 toxin	268.2	15	50	HT-2 toxin is a type A trichothecene and a metabolite of T-2 toxin. HT-2 toxin showed a high acute toxicity in mice and chickens with LDSO values in the same dose range as reported for T-2 toxin. HT-2 toxin was shown to induce feed refusal in mice. Haematotoxic, immunotoxic and cytotoxic effects of HT-2 toxin were observed in vitro.							
Fumonisins		(fumonisin E	81, fumonisin	B2, fumonisin B3)							
Fumonisin B1	15	10	30	Fumonisins are hepatotoxic and nephrotoxic. High fumonisin doses cause the species specific fatal							
Fumonisin B2	15	10	30	diseases porcine pulmonary edema in pigs and equine leukoencephalomalacia in horses. Fumonisin B1 has been classified as a group 2B carcinogen (possibly carcinogenic to humans) by the International Agency for Research on Cancer. Fumonisins were shown to be immunotoxic and to compromise gut health. They furthermore exert reproductive toxicity.							
Alternaria Toxins		(alternariol)									
Alternariol	15.6	5	15	Alternariol showed no acute toxicity in published studies in animals. However, alternariol was cytotoxic, genotoxic and mutagenic to mammalian cell lines in vitro. Furthermore, negative effects of alternariol on the reproductive and immune system have been suggested by in vitro results.							
Fusarium Toxins		(moniliform	in)								
Moniliformin	39.6	10	30	Moniliformin was shown to be toxic to rodents and poultry. Toxic effects included damage to the heart muscle, respiratory distress, decreased feed intake and body weight gain and impaired immune function.							
Beauvericin and Ennia	atins	(beauvericin	, enniatin A,	enniatin A1, enniatin B and enniatin B1)							
Enniatin A	3.8	0.5	2	Beauvericin and enniatins were toxic to different mammalian cell lines in vitro. According to published							
Enniatin A1	9.8	0.5	2	studies, acute exposure to beauvericin and enniatins was not toxic to animals. However, the effect of							
Enniatin B	308.5	1	3	chronic exposure is currently unknown. According to the results of in vitro studies, beauvericin and enniatins may affect the immune system and the bioavailability of pharmaceuticals. Beauvericin and							
Enniatin B1	28.9	0.5	2	enniatins were shown to accumulate in the eggs of laying hens, but detected levels were likely no cause for concern.							

Customer Portal NEWS

A demo of the logged-in experience and service catalogue

Logged-in experience

Self service for lab and analytical (Spectrum TOP[®] 50) services

•	•	•	
Step 1 General Information	<u>Step 2</u> Sample Data	<u>Step 3</u> Analysis	
Select a Location 4		O Search	
This table shows all your locations. Select the location yo	ur sample is coming from.		
Location \downarrow	u 1	City	
O Abatedora Avicola STA	VBRN092540 - 10.818.793/0001-04	Morrinhos	
🚫 Sao Paulo STA Vitoria	VBRN092540 - 10.818.793/0001-04	Morrinhos	
C Kingston STA Vitoria STDA	VBRN092540 - 10.818.793/0001-04	Morrinhos	
O Avicola LTDA	VBRN092540 - 10.818.793/0001-04	Morrinhos	
Overview of your orders so far, and their delivery status			
Request	Analysis Type		
123456	✓ Mycotoxins		~

Survey data Results

All commodities in Hungary from Jan 2023 to Sep 2023

Parameter	Afla	ZEN	DON	T2	FUM	ΟΤΑ	Metabolite	Average	Maximum	Prevalence
Number of samples	444	445	444	436	437	434	Deoxynivalenol	315	5 193 ²	68%
% Contaminated samples	29%	69%	57%	40%	69%	26%	Nivalenol	176	5 352	2 22%
% Above risk threshold	20%	16%	34%	8%	24%	6%	Deoxynivalenol-3-Glucoside	44	108	3 20%
Average of positives (ppb)	19	44	529	36	551	14	15-Acetyl-Deoxynivalenol	65 1818) /5 2 1819	5 10% 2 2%
Median of positives (ppb)	3	22	204	24	296	4		1010	, 1010	, 270
Maximum (ppb)	1362	884	9400	298	7754	294				

Prevalence of Mycotoxins Detected

No. of Mycotoxins per Sample

99%

>1 mtx

Finished Feed Poultry in Hungary from Jan 2023 to Sep 2023

Parameter	Afla	ZEN	DON	T2	FUM	OTA
Number of samples	70	70	70	70	70	70
% Contaminated samples	24%	93%	86%	40%	97%	14%
% Above risk threshold	10%	19%	56%	4%	10%	6%
Average of positives (ppb)	4	25	405	25	215	10
Median of positives (ppb)	2	16	211	20	129	7
Maximum (ppb)	26	97	2298	72	912	27

Prevalence of Mycotoxins Detected

dsm-firmenich

1%

1

Finished Feed Swine in Hungary from Jan 2023 to Sep 2023

Parameter	Alld	ZEIN		12	FUM	UIA
Number of samples	33	33	33	33	33	33
% Contaminated samples	52%	76%	73%	21%	94%	48%
% Above risk threshold	36%	12%	39%	0%	33%	15%
Average of positives (ppb)	13	25	387	23	490	14
Median of positives (ppb)	5	10	223	15	208	4
Maximum (ppb)	101	139	1255	46	3240	59

Prevalence of Mycotoxins Detected

No. of Mycotoxins per Sample

Finished Feed Ruminants in Hungary from Jan 2023 to Sep 2023

Parameter	Alla	ZEIN		12	FUM	UIA
Number of samples	12	12	12	12	12	12
% Contaminated samples	17%	83%	67%	67%	100%	17%
% Above risk threshold	17%	58%	67%	0%	8%	0%
Average of positives (ppb)	6	69	434	6	149	7
Median of positives (ppb)	6	60	217	5	112	7
Maximum (ppb)	10	247	1546	15	524	8

Prevalence of Mycotoxins Detected

Wheat grain & Barley grain in Hungary from Jan 2023 to Sep 2023

SIL N

	Parameter	Afla	ZEN	DON	T 2	FUM	ΟΤΑ
	Number of samples	62	63	63	53	61	52
	% Contaminated samples	2%	37%	29%	57%	34%	2%
	% Above risk threshold	2%	5%	19%	11%	15%	0%
1	Average of positives (ppb)	4	34	640	32	482	2
	Median of positives (ppb)	4	31	218	27	375	2
	Maximum (ppb)	4	98	6535	65	1272	2

Prevalence of Mycotoxins Detected

No. of Mycotoxins per Sample

Corn kernels in Hungary from Jan 2023 to Sep 2023

Parameter	Afla	ZEN	DON	T2	FUM	ΟΤΑ
Number of samples	39	38	38	40	35	39
% Contaminated samples	36%	39%	47%	40%	69%	26%
% Above risk threshold	36%	24%	47%	12%	60%	8%
Average of positives (ppb)	117	158	1951	64	1698	58
Median of positives (ppb)	11	63	1480	32	1032	6
Maximum (ppb)	1362	792	5826	231	7754	294

Prevalence of Mycotoxins Detected

No. of Mycotoxins per Sample

Corn Silage (all types) in Hungary from Jan 2023 to Sep 2023

	Parameter	Afla	ZEN	DON	T2	FUM	ΟΤΑ
	Number of samples	31	31	31	31	31	31
2	% Contaminated samples	10%	45%	55%	0%	81%	6%
	% Above risk threshold	6%	10%	35%	0%	26%	0%
*	Average of positives (ppb)	2	33	466		574	3
2	Median of positives (ppb)	3	23	233		297	3
	Maximum (ppb)	3	107	1934	0	2956	3

Prevalence of Mycotoxins Detected

No. of Mycotoxins per Sample

ageningen University & Researc

lian National Research Council

ntonio Moretti

dsm-firmenich

Trend for Corn kernels in Hungary from Jan 2018 to Dec 2023

prediction of aflatoxin contamination in maize and wheat crops, under a climate change scenario

1.3

Prediction data

Mycotoxin Prediction Service

- Since 2020
- Regional, (exporting) countries up to district level
 - Corn: DON, ZEN, FUM, AFLA
 - Wheat: DON, ZEN

Mycotoxin Prediction Hungary

Corn, 4-9-2023

District	FUM	Afla	DON	ZEN	District (cont)	FUM	Afla	DON	ZEN
Bacs-Kiskun Megye	73%	6%	87%	45%	Jasz-Nagykun-Szolnok Megye	57%	6%	78%	41%
Baranya Megye	84%	7%	94%	49%	Komarom-Esztergom Megye	86%	6%	91%	47%
Bekes Megye	80%	7%	91%	47%	Nograd Megye	48%	3%	86%	45%
Borsod-Abauj-Zemplen Megye	79%	5%	92%	48%	Pest Megye	74%	5%	88%	46%
Budapest Fovaros	59%	5%	82%	43%	Somogy Megye	87%	7%	92%	48%
Csongrad Megye	74%	7%	87%	45%	Szabolcs-Szatmar-Bereg Megye	84%	6%	93%	48%
Fejer Megye	72%	6%	88%	46%	Tolna Megye	89%	7%	93%	48%
Gyor-Moson-Sopron Megye	84%	6%	92%	48%	Vas Megye	89%	6%	95%	51%
Hajdu-Bihar Megye	78%	7%	90%	47%	Veszprem Megye	83%	7%	94%	49%
Heves Megye	75%	7%	85%	44%	Zala Megye	90%	6%	95%	51%

Mycotoxin Prediction Hungary

Wheat, 28-8-2023

District	DON	ZEN	District (cont)	DON	ZEN
Bacs-Kiskun Megye	49%	8%	Jasz-Nagykun-Szolnok Megye	76%	12%
Baranya Megye	51%	8%	Komarom-Esztergom Megye	70%	11%
Bekes Megye	70%	11%	Nograd Megye	23%	4%
Borsod-Abauj-Zemplen Megye	44%	7%	Pest Megye	67%	10%
Budapest Fovaros	64%	10%	Somogy Megye	60%	9%
Csongrad Megye	65%	10%	Szabolcs-Szatmar-Bereg Megye	65%	10%
Fejer Megye	58%	9%	Tolna Megye	59%	9%
Gyor-Moson-Sopron Megye	55%	9%	Vas Megye	38%	6%
Hajdu-Bihar Megye	68%	11%	Veszprem Megye	50%	8%
Heves Megye	69%	11%	Zala Megye	43%	7%

Mycotoxin & (Future) Risk Exposure incl. young children

Figure 1. Risk maps for aflatoxin contamination in maize at harvest in 3 different climate scenarios, **present**, +2°C, +5°C. Mean daily data used as input result from 100-year run of the predictive model AFLA-maize in 2254 geo-referenced points throughout Europe, in the 3 scenarios. The scale 0–200 refers to the aflatoxin risk index (AFI), output from the predictive model; increasing the (present (a), +2°C (b), +5°C (c)) number, the risk of contamination increases. Maps generated using Mathworks, Matlab. Computer Program, 2012 http://it.mathworks.com/.

Pustjens *et al.* World Mycotoxin Journal, 2022. > In NL 1 to 2 yrs old children, look at 95 percentile, mycotoxin intake (AF, Alternaria, OTA, T-2/HT-2) may pose health risk based on HBGV or MOE.

Battilani et al. Nature, 2016. > Increased prevalence of Afla in EU at +2 or +5 degree Celsius.

2.0 Mycotoxins as a predisposing factor in animal diseaseas and production

" If there is an issue with animal most probably it is at Gut level.."

"The Good Gut health is the ability of the animal to adapt into the environmental stresses, that is put under .

The ability to reach 100% of its genetic potential. The central check point of the healthy animal.

The no. 1 factor is diet as the animal need to eat to grow and to perform".

> Dr. Michel Kogut, Microbiologist Food and Feed Safety Research

Michael KOGUT, Research Microbiologist | Cited by 7909 | of United States Department of Agriculture, District of Columbia (USDA) | Read 270 publications

The first site of Mycotoxins contact in animal is the Gut and the Gut microbiota

The gut epithelium a selective barrier, facilitates the transport of molecules (through or between cells). Any damage results in increased permeability of the layer, leading to intestinal disorders.

Ruminal mycotoxin degradation

Mycotoxin	Degradation in the Rumen	No Degradation in the Rumen
Aflatoxin	0 – 42 % More toxic Aflatoxicol (Engel and Hagemeister, 1978)	58 – 100 %
Zearalenone	50% α - and β -Zearalenol (Gruber-Dorninger et al., 2021)	50 % metabolites more estrogenic
Trichothecenes	15 % – 99 % DOM–1 (Cote et al., 1986; Kiessling et al., 1984, Debevere, 2020)	1 – 85 % pH dependent
Ochratoxin A	90–100% (Mobashar et al, 2010)	0-10%
Fumonisin	No degradation (EFSA, 2018)	Unknown, no reported oral bioavailability
Enniantin B	1–25% (Debevere et al, 2020)	75%-99%

AFLA Reduced animal health, performance, reproduction, weight loss, liver damage, decreased milk yield, (Whitlow L.W., Hagler)

ZEN reproduction problems, reduced CR, ovarian Cysts (Mahmoud et al., 2013)

DON Iimmunosuppression, reduced growth rate, reproductive disorders, feed refusal, vomiting (Rocha O., Ansari K. 2005)

OTA Nephrotoxic, hepatotoxic, teratogenic, carcinogenic. (Yang S., Zhang H. 2015)

FUM Liver, kidney lesion damage (Gurung N., Rankins D)

Ruminal mycotoxin degradation

Rumen microbiota can break down mycotoxin...

1. Mycotoxin have antimicrobial properties

(FinkGremmels, 2008; Strickland et al., 2011)

2. Rumen degradation can lead to more toxic metabolites

(DeLorme et al. 2007).

3. Divers' diet higher risk of mycotoxin

(Fink-Gremmels, 2008)

4. Rumen environment / pH dependent mycotoxin degradation

(A. Gallo 2017)

5. Mycotoxins alters rumen microbiota

(Q. Zebali, at all 2020)

High feed intake increase passage rate Diagnostic challenge in multiple ingredients Emerging & Mask mycotoxins detection issue Interactions between mycotoxin additive, synergistic, Specific & nonspecific symptoms

Diversified diet for ruminants

Feed	Possible mycotoxins present
Concentrates	Aflatoxins, FUM, ZEN, DON, Trichothecenes, ergot alkaloids
Silages	DON, ZEN, FUM, Patulin, mycophenolic acid, roquefortines, fumitremorgens, cerruculogen, monacolines, etc
Forages	Alternaria, Cyclopiazonoic acid, DON, other thrichothecenes, Mycophenolic acid, roquefortines, etc
By-products	Alfatoxin, ZEN, FUM, DON, T-2, HAT-2

Maize silage main diet component >30% in TMR Maize based diet ingredients >50% in the TMR

1794ppb x8kg =14.352ppb +4kgCR x1480>20ppM Trich.B/cow/day

Corn kernels in Hungary from Jan 2023 to Sep 2023

Parameter	Afla	ZEN	DON	T2	FUM	OTA
Number of samples	39	38	38	40	35	39
% Contaminated samples	36%	39%	47%	40%	69%	26%
% Above risk threshold	36%	24%	47%	12%	60%	8%
Average of positives (ppb)	117	158	1951	64	1698	58
Median of positives (ppb)	11	63	1480	32	1032	6
Maximum (ppb)	1362	792	5826	231	7754	294

dsm-firmenich ee

S ANAGY	ST ST		Ŏ.			\frown						
		1.000					DS	M		Sample: AT-	30196-00	2 Unsp
Client: DSN	I Nutritional Pr	oducts Hungary	Kft.				BRIGHT SC Date: 01 M	IENCE. BRIGH	ITER LIVING.	Substance	Value (µg/kg)	LOD (µg/kg
pecies: Un	specified	hert Reves								Zearalenone and me	tabolites	(zearale
25 W CONta	ct person, nore	Spectrum 1	Top 50: M	ulti – Mycoto	oxin Analy	sis AT-30	196			Zearalenone	92.9	3
e followin	g tables give ar ns (ppb = μg/k	overview on the	e positively h moisture o	identified myco content (silages	otoxins and t	he respectiv ples are drie	e d prior to an	alysis and		Type B trichothecen	es	(deoxyn
sults are b able 1 - My	ased on the dri	ed weight of the	sample.	terpretation fo	r the specie	s indicated				Deoxynivalenol	1933.9	15
ample ID	Sample Type	Species	Afla (µg/kg)	ZEN + Metabolites (µg/kg)	Type B Trichos (µg/kg)	Type A Trichos (µg/kg)	FUM (µg/kg)	OTA (µg/kg)	Ergot Alkaloids (µg/kg)	DON-3-glucoside	63.7	15
30196-001	Corn silage	Unspecified	nd	nd	nd	nd	1164	nd	nd	Nivalenol	352.4	25
-30196-002	Corn silage	Unspecified	nd	93	2350	nd	297	nd	nd	Fumonisins		(fumoni
-30196-003 -30196-004	Corn silage Corn silage	Unspecified	nd	50 60	1114 1794	nd nd	83 2956	nd	nd	Fumonisin B1	204.4	10
xplanation	of Table	1010		S	D 80				8.0			
ture	Explanation									Fumonisin B2	92.2	20
	Low risk for spe- (Unspecified: Afla - Medium risk for (Unspecified: Afla 2	cies type for major <2, ZEN <50, Type B species type for m 2<4, ZEN 50-<100, T	<pre>mycotoxins <150, Type A < najor mycoto ype B 150-<20</pre>	50, FUM <500, OT/ xins 0, Type A 50-<100, I	A <10, Ergot <30 FUM 500-<1000))), OTA 10-<100,	Ergot 30-<300)			Alternaria Toxins	_	(alterna
	High risk for spe (Unspecified: Afla 2 For tables below se	cies type for majo 24, ZEN 2100, Type B ome metabolites have	r mycotoxins 2200, Type A no defined low	2100, FUM 21000, (, medium and high	OTA ≥100, Ergol values. These ar	t 2300) re colored accor	ding to compari	son with all pre	vious results:	Alternariol	36.3	5
	Below the media	an of positive value	es for all prev	riously tested san	nples					Resuvericin and Eng	intine	(hanua
	Above the medi	an of positive valu	es for all pres	viously tested san	mples					Deauvericin and Enn	AC C	locative
-	In top 10% of th	e median of positi	ve values for	all previously tes	ted samples					Beauvencin	40.5	4
	For values deter not detected (br	cted below the Lim	it of Quantifi etection)	ication (LOQ), LO	Q/2 is shown					Enniatin B	7.1	1.5

Sample: AT-30196-002 Unspecified (Corn silage) R601 Corn silage

Substance	(µg/kg)	(µg/kg)	(µg/kg)	Description
Zearalenone and met	abolites	(zearalenor	e, alpha-zea	ralenol, beta zearalenol, zearalanol)
Zearalenone	92.9	3	10	Zearalenone is estrogenic, acting like the sex hormone estradiol thereby interfering with fertility and sexual development of animals. It is also hepatotoxic, hematotoxic, immunotoxic and genotoxic.
Type B trichothecene	s	(deoxynival	enol, 3-acety	Ideoxynivalenol, 15-acetyldeoxynivalenol, DON-3-glucoside, nivalenol, 15-acteoxyscirpenol, fusarenon X)
				Deoxynivalenol induces emesis and feed refusal resulting in reduced weight gain. Other effects include
Deoxynivalenol	1933.9	15	50	immunotoxicity, hematotoxicity and myelotoxicity, as well as reproductive toxicity. It furthermore causes intestinal lesions and compromises the intestinal barrier function.
DON-3-glucoside	63.7	15	50	Deoxynivalenol-3-glucoside is a masked mycotoxin. It is converted back to deoxynivalenol in the gastrointestinal tract of mammals.
Nivalenol	352.4	25	75	Nvalenol induces emesis and feed refusal resulting in reduced weight gain. Other effects include immunotoxicity, hematotoxicity, reproductive toxicity and to kidneys and the gastrointestinal tract.
Fumonisins		(fumonisin	B1, fumonisi	1 B2, fumonisin B3)
Fumonisin B1	204.4	10	30	Fumonisins are hepatotoxic and nephrotoxic. High fumonisin doses cause the species specific fatal
Fumonisin B2	92.2	20	60	diseases porcine pulmonary edema in pigs and equine leukoencephalomalacia in horses. Fumonisin B1 has been classified as a group 2B carcinogen (possibly carcinogenic to humans) by the International Agency for Research on Cancer. Fumonisins were shown to be immunotoxic and to compromise gut health. They furthermore exert reproductive toxicity.
Alternaria Toxins		(alternariol)	
Alternariol	36.3	5	15	Alternariol showed no acute toxicity in published studies in animals. However, alternariol was cytotoxic, genotoxic and mutagenic to mammalian cell lines in vitro. Furthermore, negative effects of alternariol on the reproductive and immune system have been suggested by in vitro results.
Beauvericin and Enni	atins	(beauverici	n, enniatin A,	enniatin A1, enniatin B and enniatin B1)
Beauvericin	46.5	2	6	Beauvericin and enniatins were toxic to different mammalian cell lines in vitro. According to published
Enniatin B	7.1	1.5	5	studies, acute exposure to beauvericin and enniatins was not toxic to animals. However, the effect of chronic exposure is currently unknown. According to the results of in vitro studies, beauvericin and
Enniatin B1	5.0	1.5	5	enniatins may affect the immune system and the bioavailability of pharmaceuticals. Beauvericin and enniatins were shown to accumulate in the ears of laving hens, but detected levels were likely no cause

for concern

Animal respond to mycotoxin

Mycotoxins impact on ruminants reported from dairy practice

Feeding of mycotoxin-contaminated materials may lead to:

- Reduce feed intake
- Prolonged feeding time,
- Reduced rumen fill,
- Negative energy balance
- Gastrointestinal upset
- Poor feed digestion and conversion,
- Altered milk production or components
- Reproduction issues as early abortions

Mobilization of nutrient and fat stores that influence body condition and health. Challenge ruminal microflora due to their antimicrobial, anti-protozoal and antifungal activity.

Aflatoxins - Carry Over into Milk

(Veldman et al, 1992)

Aflatoxins have the highest acute and chronic toxicity of all mycotoxins

Carry over % increased with modern genetics (1-2 % to above 8,6 %) Prof. Fink- Gremmels. Negative affect on production, immune system and rumen metabolism in cattle (Hussein and Brasel, 2001)

DON affected immune function of cows

Effects of feed naturally contaminated with Fusarium mycotoxins on metabolism and immune function of dairy cows, University of Guelph J. Dairy Sci. 92:1585–1593 doi:10.3168/jds.2008-1267 © American Dairy Science Association, 2009.

Effects of feed naturally contaminated with *Fusarium* mycotoxins on metabolism and immunity of dairy cows

S. N. Korosteleva,* T. K. Smith,* and H. J. Boermans†

*Animal and Poultry Science Department, Ontario Agriculture College, and †Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1

	Fable	2. Mycotoxin	content o	of feedstuffs	and	experimental	diets	(mg/kg)
--	-------	--------------	-----------	---------------	-----	--------------	-------	---------

Mycotoxin ¹	Corn	Wheat	Hay	Corn silage	Control TMR	Contaminated TMR
DON	7.5	2.4	_	0.31	0.5	3.5
15-acetyl-DON	0.9					
ZEN	0.7		0.31		_	

Effect of diets on neutrophil phagocytotic activity (%; overall means)

Group	Phagocytosis activity
Control	64.0
Contaminated	53.3*
SEM	2.7
Control vs. contaminated (P-value)	0.0261

Effect of diet on antibody response to ovalbumin (optical density)

Group	Primary response	Secondary response	BW 630 kg. Milk 36 kg. DIM 90 -
Control	0.86	1.20	- 150
Contaminated	1.15^{*}	1.30	
SEM	0.075	0.060	
Control vs contaminated (<i>P</i> -value)	0.0285	0.4631	
¹ Least squares means.			-
*P < 0.05.			

Significantly decreased neutrophil phagocytosis in cows fed mycotoxin contaminated feed.

Increase primary IgG antibody response to OVA in animals fed the contaminated diet .

Trichothecenes posses ability to up- and down-regulate immune function
DON reduce feed intake

Induces release of anorexia mediators

DON induces the release of the satiety hormones, including cholecystokinin (CCK), which are critical mediators of anorexia

Figure. Relationship of DON exposure (-----) and a control diet (____) to the anorectic response (decrease in feed intake) mediated by CCK.

Wu et al., 2014; Toxicological Sciences

dsm-firmenich 🕶

DON

Zearalenone alters animal hormonal status

- Fusarium spp. produced mycotoxin (e.g. Fusarium graminearum, Fusarium culmorum)
- Different effects:
 - Antimicrobial
 - Induces oxidative stress
 - Inflammatory
 - Estrogen's receptors binding

Estrogen receptors are located in: • uterus

- mammary gland
- Hypothalamus
- Pituitary gland

It's degraded by ruminal microbiota, BUT:

- α -ZEL is **60x** as estrogenic as ZEN
- β-ZEL is **0.2x** as estrogenic as ZEN

Zearalenone induced follicular cysts

200 ppb ZEN

Mean follicular diameter: 22.1±2 mm

Economical impact:

400 ppb ZEN Mean follicular diameter: 42.3±3 mm

(Mahmoud et al., 2013)

- Extension of open period
- Cost of treatment
- Risk of elimination of cows from herd

dsm-firmenich

ZEN lowers rumen pH, alters rumen fermentation

Short-term exposure to zearalenone or fumonisins affects rumen fermentation and microbiota, and health variables in cattle, Hartinger et al. 2021

pH:

ZEN decreased mean ruminal pH and the minimal pH ZEN decreased hourly mean pH between 3pm and 7am

Institut für Tierernährung und funktionelle Pflanzenstoff Thomas Hartinger@vetmeduni.ac.a

Zebeli, Qendrim, Univ.-Prof. Dr.sc.agr

E-Mail: Qendrim Zebeli@vetmeduni.ac.a

Institutsleitung

Veterinärplatz

Zur Visitenkarte

1210 Wien

Institut für Tierernährung und funktionelle Pflanze

SCFA:

SCFA in total lowered in ZEN treatment at Oh and 3h ZEN lowered Acetate concentration

	*	ZEN				
Item	0 h	3 h	10 h	0 h	3 h	10 h
Total SCFA (mmol/L)	85.5 ^A	107.1 ^A	103.1	68.6 ^{Ba}	72.7 ^{Bab}	104.7 ^b
Acetate (% ²)	63.5 ^B	62.7	63.1	66.8 ^{Aa}	64.1 ^{ab}	61.4 ^b
Propionate (%)	19.2	21.1	20.8	17.4	19.6	21.3
n-Butyrate (%)	12.9	11.5	10.9	11.7	10.9	12.4
n-Valerate (%)	1.27	1.56	1.60	0.94	1.65	1.60
Caproate (%)	0.62	0.94	1.33	0.51	1.09	1.07
lsobutyrate (%)	1.14	0.95	0.86	1.24	1.08	0.85
Isovalerate (%)	1.35	1.20	1.32	1.34	1.43	1.15

cordism-figmenich

DON & FUM effects on health and performance Mycofix conteraction

A mycotoxin deactivating feed additive counteracts the adverse effects of low-level Fusarium mycotoxins in dairy cows Significant reduction in milk yield after 21 days exposure to MTX (Antonio Gallo *et al.*, 2020)

dsm-firmenich ee

Mycotoxins, predisposing factor for intestinal and systemic infectious diseases

(Antonissen et al. 2014, 2015; Bouhet and Oswald 2005; Gallo et al. 2015; Pinton and Oswald 2014)

The presence of mycotoxins in feed is a predisposing factor for :

- The occurrence of diseases
- Treatment-related complications
- Failure of ongoing vaccinations,
- Reduced productivity and
- Reproductive problems.

MTX prevention, part of disease prevention

Mycotoxin-Related Problems

There are no safe levels: major effects can be observed in the immune system at low mycotoxin levels

Severe economic losses!

Consequences of immune suppression

- increased risk of infections
- more severe disease processes
- therapies become more difficult
- impaired vaccination response
- activation of tumor formation

dsm-firmenich 🐽

45

Effects of mycotoxins on the liver

Impair the detoxification functions of the liver through histological changes

Problems on Farm & Associated Cost

Sow longevity

DON and ZEN affect the ultrastructure and histology of pig liver. Histopathological score of the examined livers according to the histology activity index (HAI). *Skiepko et al., 2020*

Mycotoxins are targeting major organs and tissues, affecting their functionality and integrity

 Organ and tissues disfunction can lead to mortality and involuntary culling

Dolenšek et al., 2021

Sinusoidal leukocytosis (Increased numbers of leukocytes) in pregnant gilts fed **mycotoxins** (B), indicating **inflammatory process in liver**

Pregnant gilts fed mycotoxins (B) had increased number of **apoptotic cells in liver**

dsm-firmenich 🐽

Classified Personnel Information

Effects of mycotoxins on the gut

- Negative effects on microbiota
- Impacts on villus height and tight junction function
- General effect on feed intake

Microbiota and Villi formation

Effect of ZEN in GIT of pregnant sows

Bacterial numbers in cecal digesta of sows

Villous height and crypt depth (µm) in jejunum of sows

ZEN 2.17 ppm; duration day 35-70 of pregnancy; samples collected @ day 70

Mycotoxins impair digestion!!!

Negative effect on microbiota Negative effect on GIT structure

the jejunum of sows

Interleukin (IL)-1 α ; IL-6

 \checkmark

 \checkmark

 \checkmark

Negative effect oxidative stress markers in

Upregulate gene expression of (TNF)- α

Downregulated gene expression of IL-8

dsm-firmenich 🐽

Liu et al., 2017

Effects of mycotoxins on the uterus/ovaries

- Impacts on oocyte development
- Disruption of pregnancy hormones

Mycotoxins Reduce the Developmental Capacity of Oocytes by delaying cleavage process and blastocyst formation

Effect of mycotoxins on the uterus

ZEN exposure increases the weight of the reproductive tract

→ The longer the ZEN exposure period, the more negative is the effect on the weight of the reproductive tract.

ZEN had a negative influence on the reproductive tract weight average reproductive tract weight (g per kg body weight)*100:

51.8 ± 20.6	Control group,
55.8 ± 17.2	ZEN low group
121.4 ± 43.4	ZEN medium group,
353.4 ± 110.6	ZEN high group

ZEN is estrogenic and has a direct effect on fertility and embryo viability

dsm-firmenich

Reproductive tract at d27 (in cm)

Effects of mycotoxins on the vulva/udder

- Enlargement of the vulva
- Cell death (apoptosis) in udder

Effect of ZEN on vulva size

ZEN exposure increases vulva size

→ ZEN exposure causes a dosedependent increase of the vulva size.

- Vulva was significantly enlarged compared to negative control from
 - from d 6 onwards for the ZEN HIGH group and
 - D 13 onwards for the ZEN MEDIUM group
- On d 27, the vulva was enlarged by the factor 1.9 and 3.3 in the ZEN MEDIUM and ZEN HIGH group, respectively
- No significant changes were observed in the ZEN LOW group compared to negative control
 dsm-firmenich

Transfer of Deoxynivalenol & Zearalenone in Swine

^[1] Vanyi et al., 1993; Acta Vet Hung 42; ^[2] Goyarts et al. 2007, Toxicol Letters 171; ^[3] Dänicke et al. 2007, Food & Chem Toxicol 45; ^[4] Henning-Pauka et al. 2018, Porcine Health Management 4; ^[5] Savyari et al. 2018, Toxins 10; ^[7] Stepanova et al. 2020, Toxins 12; ^[8] Ujčič-Vrhovnik et al. 2020, Acta Veterinaria Hungarica 68(2); ^[9] Ferret-Bernard et al. 2020, Nutrien **Tirmenich** (12; ^[10] Benthem de Grave et al. 2021, Toxins 13

Placenta transfer of mycotoxins

dsm-firmenich 🐽

Sayyari et al. 2018, Toxins 10

Placenta-Transfer of DON

Key messages

- DON and ZEA are being (successfully) transmitted via placenta
- DON plasma levels of piglets are almost identical with sow plasma levels
- DON persists up to 14 weeks in piglets

Milk transfer of mycotoxins

WWWWWWWWWWWW

Key messages

- Colostrum/milk transfer of DON and ZEN is possible
- Residues in milk are rather low compared to the rate of placenta transfer

• [Be careful with the interpretation of milk residues!]

Mycotoxins decrease intestinal barrier function

- multiprotein complexes
- network near luminal surface
- seal paracellular pathway
- prevent transport of stressors (bacteria, viruses, toxins, antigens)

DON increases transepithelial passage of *Salmonella* Typhimurium

OPEN OACCESS Freely available online

PLos one

The Mycotoxin Deoxynivalenol Potentiates Intestinal Inflammation by *Salmonella* Typhimurium in Porcine Ileal Loops

Virginie Vandenbroucke¹^s, Siska Croubels¹, An Martel², Elin Verbrugghe², Joline Goossens¹, Kim Van Deun², Filip Boyen², Arthur Thompson³, Neil Shearer³, Patrick De Backer¹, Freddy Haesebrouck², Frank Pasmans²

1 Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium, 2 Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium, 3 Institute of Food Research, Norwich Research Park, Norwich, United Kingdom

Impact of non-cytotoxic DON-concentrations on transepithelial passage of *Salmonella* Typhimurium using IPEC-J2 cells

- After exposure to just 100 ppb DON \rightarrow increase in passage of Salmonella Typhimurium
- Exposure to 500 and 750 ppb DON → significant increase in passage (Adapted from Vandenbroucke *et al.* 2011)

dsm-firmenich 🐽

Tail necrosis

Tail injuries without any "help" from other animals.

(Hutura et al. 1938, Penny et al. 1971, Jademus et al. 2002, Blowey and Done, 2003, Santi et al. 2008, Meyer, 2015, Lechner et al. 2015, Langbein et al. 2016)

Klinisches Bild

Klinisches Bild

Schwanznekrosen bei Saugferkeln innerhalb der ersten Lebenstage – kein Zutun anderer Ferkel, keine Bisse

Ringabschnürungen an Ferkelschwänzen; Nekrose der distalen Bereiche; kein Zutun anderer Schweine

Source: Article Prof. Dr. G. Reiner

Swine Inflammation and Necrosis Syndrome (SINS)

dsm-firmenich 🐽

Pictures provided by Mirjam Lechner

Swine Inflammation and Necrosis Syndrome

dsm-firmenich 🐽

Source: Article by Dr. G. Reiner. Entzündungs- und Nekrosesyndrom beim Schwein (SINS). Deutsches Tierärzteblatt (2019); 67 (3)

Mycotoxin Thresholds, Limits, Orientation levels

DON (mg/kg)										
	Moderate	Medium	High	EU GUIDANCE VALUES*	EFSA NOAEL	EFSA LOAEL				
Piglet	<0,15	0,15-0,20	>0,20	0,90	0,70	2,8				
Gilt	<0,25	0,25-1,00	>1,00	0,90	0,70	2,8				
Sow	<0,20	0,20-0,90	>0,90	0,90	0,70	2,8				
Fattening Pig	<0,25	0,25-1,00	>1,00	0,90	0,70	2,8				
ZEN (mg/kg)										
Piglet	<0,05	0,05-0,1	>0,1	0,10	0,22	0,42				
Gilt	<0,05	0,05-0,1	>0,1	0,10	1,00	5,0				
Sow	<0,05	0,05-0,1	>0,1	0,25	1,00	5,0				
Fattening Pig	<0,1	0,1-0,25	>0,25	0,25	-	-				
FUM (mg/kg)										
Piglet	<0,75	0,75-1,00	>1,00	5,00	1,0	5,0				
Gilt	<0,75	0,75–1,00	>1,00	5,00	1,0	5,0				
Sow	<0,75	0,75-1,00	>1,00	5,00	1,0	5,0				
Fattening Pig	<1,0	1,0-2,0	> 2,0	5,00	1,0	5,0				
AFLA B1 (mg/kg) * EU										
Piglet	<0,002	0,002-0,004	>0,004	0,01	-	-				
Gilt	<0,005	0,005-0,010	>0,010	0,02	-	-				
Sow	<0,005	0,005-0,010	>0,010	0,02	-	-				
Fattening Pig	<0,005	0,005-0,010	>0,010	0,02	_	-				

- NOAEL (no observed adverse effect level)
- LOAEL (lowest observed adverse effect level)
- NOAEL = of 0.7 mg/kg feed was
- reported for reduced feed intake.
- LOAEL = consider the critical acute effect in pigs at the concentration of 2.8 mg/kg feed for vomiting.
- Reference point (RP) = "estimated NOAEL"
- Orientation Values = ensure that feed business operators use in their HACCP system the guidance values referred to in determine the critical limits at CCP from unacceptability, for the prevention, elimination or reduction of identified hazards.
- AFLA = (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs

dsm-firmenich

IN SUMMARY...

- Mycotoxins have been showed to decrease feed intake and impair sow body condition during lactation, which can worsen some subclinical disease by pathogens and negatively affect milk production
- **Mycotoxins can affect the mammary gland functionality** and milk production **via induction of cells apoptosis** and oxidative stress
- Mycotoxins can be transferred via placenta, colostrum and milk to piglets, affecting their health and resilience (SINS)

Mycotoxins can act at different organ levels, impairing the ovary function, hormonal status of sows, mammary gland functionality, affecting the genetic potential of sows, from ovulation, to placental development → Welfare, longevity and productivity issues

Mycotoxins Risk Management is crucial to optimize modern sows productivity, longevity and welfare dsm-firmenich ee

&

Finished Feed vs new EFSA opinion

dsm-firmenich 🚥

Mycotoxins, Predisposing Factor on Animal Health and Production

Safeguard your feed to protect your birds

Reduce the risk of **fungal growth** and mycotoxins development in **storages**

- **Deactivate** and prevent the harmful effects of **mycotoxins from feedstuff** using a wide range of toxin management technologies
- ... **to prevent** the **negative** immunity, fertility and growth inhibitory **effects of toxins**

Effect of Mycotoxins in Poultry Health

Clinical / Classical effects of Mycotoxins - Poulty

AFLA, Tricho's & FUM

Fatty liver, immunomodulation, lower performance

ZEN

Cystic oviduct

T2, OTA, ZEA

dsm-firmenich 🐽

Egg shell changes

Clinical / Classical effects of Mycotoxins - Poultry

Oral lesions

Bad feathering

T2, HT2

Gizzard erosions

ΟΤΑ

Blood spots in yolk

dsm-firmenich 🕶
Impairs the animals to express their maximum genetic potential

Chronical lower health > performance > profitability

Consequences

- Lower absorption of:
 - Nutrients
 - Vitamins
 - Minerals
- Impairs tissues development and funcionality
- Increases disease susceptibility:
 - Salmonella Typhimurium
 - E. coli
 - Campylobacter
 - Necrotic enteritis
 - Coccidiosis
- Dirty eggs

- Redirects the energy of protein deposition for immune/inflammatory response
- Chronical effects

Fusarium toxins reduce surface for nutrient absorption

 Fusarium toxins > Changes the intestinal morphology with villi fusion consequently the absorption of nutrients

Healthy jejunum

Bracarense et al., 2011; Grenier et al., 2011

DON (3ppm) & FUM (6ppm) = fusion of the gut vili

Jejunum of Fum treated group – **fusion of the** vilosities. HE. Barr 100µm.

FUM+DON predispose to Necrotic Enteritis

The Mycotoxin Deoxynivalenol Predisposes for the Development of *Clostridium perfringens*-Induced Necrotic Enteritis in Broiler Chickens

Gunther Antonissen^{1,2}, Filip Van Immerseel¹⁵, Frank Pasmans¹⁵, Richard Ducatelle¹, Freddy Haesebrouck¹, Leen Timbermont¹, Marc Verlinden¹, Geert Paul Jules Janssens³, Venessa Eeckhaut¹, Mia Eeckhout⁴, Sarah De Saeger⁵, Sabine Hessenberger⁶, An Martel¹¹, Siska Croubels²⁴

Impairment of intestinal epithelial integrity

Effect on bacterial translocation in broilers

e.g. DON ↑ translocation of Escherichia coli and Campylobacter jejuni

Rufnau, D., Hess, C., Grenier, B., Doupovec, B., Schatzmayr, D., Hess, M., & Awad, W. A. (2020). The Mycotoxin Deoxynivalenol (DON) promotes Campylob desperimential multiplication in the intestine of broiler chickens with consequences on bacterial translocation and gut integrity. *Frontiers in Veterinary Science*, 7, 1027.

DON 5 mg/kg

FUM+DON enhances coccidial lesions

Subclinical doses of DON and FUM in broiler chickens challenged with *Eimeria* species (coccidiosis)

- 42 animals/treatment
- Treatments: control; DON (D); FUM (F); DON + FUM (D+F) same 4 diets challenged with Coccivac–B 25X (mix of 4 strains of *Eimeria*) at 14d, evaluations at 21d

Cecum lesion score (One dot represents one sample)

Article

Susceptibility of Broiler Chickens to Coccidiosis When Fed Subclinical Doses of Deoxynivalenol and Fumonisins—Special Emphasis on the Immunological Response and the Mycotoxin Interaction

Bertrand Grenier ^{1,2}, Ilse Dohnal ², Revathi Shanmugasundaram ³, Susan D. Eicher ⁴, Ramesh K. Selvaraj ³, Gerd Schatzmayr ² and Todd J. Applegate ^{1,5,*}

Number of oocysts (x 1000) found in intestinal mucosa

Reduction of Feed Conversion

Kolawole, O., Graham, A., Donaldson, C., Owens, B., Abia, W. A., Meneely, J., ... & Elliott, C. T. (**2020**). Low doses of mycotoxin mixtures below EU regulatory limits can negatively affect the performance of broiler chickens: A longitudinal study. *Toxins*, *12*(7), 433.

- 18 successive broiler performance trials
 (2200 Ross 308 broilers / experiment)
- low doses of mycotoxin mixtures naturally contaminated feed

Positive relationship between FCR and

- DON (R²=0.85)
- FBs (R²= 0.53)
- diacetoxyscirpenol (R²= 0.86)
- ZEN (R²= 0.92)
- enniatins (R²= 0.60)
- beauvericin (R²= 073)

Approx. 0,25 to 0,35 €/bird

Impairment of immunity

Humoral immunity:

1 antibody response to vaccination infectious bronchitis virus, NDV, Marek's disease, ...

e.g. broiler chickens 10 mg DON/kg feed (D1–D35)

 \rightarrow serum antibody titer against IBV

Ghareeb, K., et al. "Deoxynivalenol in chicken feed alters the vaccinal immune response and clinical biochemical serum parameters but not the intestinal and carcass characteristics." Journal of animal physiology and animal nutrition 100.1 (2016): 53-60. *P<0.05

Vertical transfer to egg

- Egg safety
- Reduced hatchability
- Gizzard ulceration (offspring)

Gizzard ulcerations of chicken progenies post-inoculation with FB or DON, or synergetic inoculation.

(A) FB₁ 6 µg; (B) FB₁ 12 µg; (C) FB₁ 24 µg; (D) FB₂ 12 µg; (E) FB₂ 24 µg; (F) FB₂ 48 µg; (G) FB₁ 3.6 µg + FB₂ 1.2 µg + FB₃ 1.2 µg; (H) FB₁ 7.2 µg + FB₂ 2.4 µg + FB₃ 2.4 µg; (I) FB₁ 14.4 µg + FB₂ 4.8 µg + FB₃ 4.8 µg; (J) FB₁ 3 µg + DON 0.1 µg; (K) FB₁ 6 µg + DON 0.1 µg; (L) FB₁ 12 µg + DON 0.1 µg; (M) DON 0.1 µg; (N) Control group. Severe gastric lesions were marked with a red arrow, and moderate lesions were labeled with a blue arrow. Peeling and shedding of the gizzard membranes were evident both in the high FB1 group and the high FB₁ + DON group. Additionally, severe hemorrhagic lesions were observed in the above two groups.

Reduced hatchability

New EFSA Scientific Opinion – Reviewed Papers

_

FUM (July 13th 2022)

Table 3: New studies on adverse effects on poultry which have become available since the 2018 Opinion (EFSA CONTAM Panel, 2018a)

N/group, breed gender	Dosage and duration	Endpoint(s)	NOAEL/LOAEL (mg/kg feed)	Reference Galli et al. (2020)	
10, male Cobb 500	0, 600 mg/kg diet 10 days	BW, WG↓ serum and liver oxidative stress	LOAEL 600 mg/kg feed		
36, male Ross 708 broilers	0, 11 mg/kg diet for 14 days	BW, WG, FCR unchanged Sa/So ratio in serum and liver ↑ Intestinal cytokines ↑	TBD	Grenier et al. (2017)	
20, male Cobb 500	0, 2.5, 5 or 10 mg FB ₁ /kg diet from day 12 to day 21 (10 days)	Feed intake, weight gain↓ Serum and liver oxidative stress parameters ¹ Liver, gut, spleen and lung histology Villi height and crypt depth↓	LOAEL 2.5 mg/kg feed for decreased crypt depth; NOAEL 5 and LOAEL 10 mg/kg feed for decreased weight gain	Sousa et al. (2020)	
126, 1-day-old male Ross 308 broilers	0, 20 mg FB ₁ /kg diet (+ FB ₂) for 21 days with 3 different diets (starter, grower, finisher)	Body weight gain and feed intake ↓ GENE expression of antioxidant response, stress, inflammation, and integrity of different enteric segments ↓	LOAEL 20 mg/kg feed	Paraskeuas et al. (2021)	
8, 9-week-old Isa Brown hens (chicken reared for laying)		WG↓ enteric villi and crypt height↓ liver histological changes, changes in bone structure and composition	LOAEL 20 mg/kg feed	Tomaszkievska et al. (2021)	

N: Number; LOAEL: Lowest Observed Adverse Effect Level; NOAEL: No Observed Adverse Effect Level; Sa/So: Sphinganine/

Sphingosine; BW: body weight; WG: weight gain; FCR: feed conversion ratio.

DON (Dec 15th 2022)

Table 3: New studies on adverse effects on broilers chickens which have become available since the 2017 Opinion (EFSA CONTAM Panel, 2017a)

N ^{\$} /group, breed gender	Dosage and duration (mg/kg feed or mg/kg bw)	Endpoint(s)	Adverse effect concentration (mg/kg feed)**	References					
84, 1-day-old Ross 708 male broilers	0, 1.6 mg/kg for 20 days	 No significantly different villus height No effect on BWG 	No effects at 1.6 mg/kg*	Grenier et al., 2016	•				
320 (plus 80 used for controls) Cobb- Cobb male broilers	DON (1.3, 4.3 mg/kg) for 15 days and the respective nitrogen free diets (NFD) (NFD Control; NFD DON 1.4 mg/kg and NFD DON 3.7 mg/kg) for 6 days	 Decreased digestibility of tyrosine. No impact on BWG. 	No effect at 4.3 mg/kg	Liu et al., 2020	60, 81-day-old Ross-308 male and female broilers	0, 5*** mg/kg for 5 weeks	Decrease in BWG Increased paracellular permeability and bacterial translocation Increased susceptibility to infection by <i>Campylobacter jejuni</i> .	Effects at 5 mg/kg*	Ruhr 2020
452, 1-day-old male Ross 308 broilers	2, 0, -5 [°] mg/kg for ay-old male Ross 39 days 5 broilers 6 broilers 7 day-old male Ross 39 days 7 d	Reduction of BWG Modulation of intestinal oxidative stress, detoxification, inflammation and integrity	Effects at ~5 [*] mg/kg feed*	s at Paraskeuas g/kg feed* et al., 2021	60, 1-day-old Ross-308 broilers	0, 5*** mg/kg for 5 weeks	Decrease in BWG Increased paracellular permeability Increased susceptibility to infection by <i>Campylobacter jejuni.</i>	Effects at 5 mg/kg*	Ruhr 2021
45. 1-day-old male	0. 4.65 and	Of note the authors used a challenge diet formulation	Effects at Di	Riahi et al.	60, one-day-old male Ross 308 broilers	0, 3.95 mg/kg naturally and 3.86 mg/kg artificially	 Reduction of villus height (day 14). Severe damage of the isoiunum villus (naturally) 	Effects at 3.86 mg/kg*	Santo 2021
broilers (Ross 308) 15.12 mg/kg fc 42 days.	15.12 mg/kg for 42 days.	and/or relative weight of thymus and gizzard weight Decrease in the absolute and relative weight of the colon and the small intestine Increased length and decreased density of the small intestine Decrease in BWG at	f 4.65 mg/kg	2020, Riahi et al., 2021b		14 and 28 days	and artificially contaminated, 28 days)		
							abdomen, cysts in the liver, hydropericardium and enlargement of kidneys in 7/20 birds (naturally contaminated, 14 days). No effect on body weight		
					120, 20-day-old male Ross 308 chickens	0.085 (control), 2.27 (low) and 5.84 (high) mg/kg for 6 days	 Increase in feed to gain ratio No effect on body weight 	Effects at 2.27 mg/kg	Wang 2019
					420, newly-hatched Ross 308 male broiler	0, starter diet: s 6.62 mg/kg, (1– 21 days of age), grower diet:7.9 mg/ kg, (22–34 days of age).	 Suppressed growth of birds fed with grower diet. Lower body weight and average daily gain. Higher feed to gain ratio in birds fed with DON grower diet. Decreases in ileum villus height and depth of all DON treated birds. 	Effects at 6.62 mg/kg	Wang Hogan
					36, 1-day-old Ross 308 broiler chickens	0, 5*** mg/kg for 4 weeks	Shorter villus and decrease in ratio of villus height and crypt depth in duodenum Reduced FCR No effects on body weight and FI Increased expression of	Effects at 5 mg/kg *	Yu et a (Corrig 2021)

*: Including the number of poultry in the control group.

COX-2 in spleen and the bursa of Fabricius.

() Check for upda

EFSA Journal

FUM – EFSA Update July 13th, 2022

New evidence has become available since previous opinion allowed to revise an RP* for adverse animal **health effects in poultry** from 20 mg/kg to **1 mg/kg**** in feed

Based on a LOAEL*** of 2.5 mg/kg feed for *reduced intestinal crypt depth*

doi: 10.2903/j.efsa.2022.7534

Assessment of information as regards the toxicity of fumonisins for pigs, poultry and horses

EFSA Panel on Contaminants in the Food Chain (CONTAM), Dieter Schrenk, Margherita Bignami, Laurent Bodin, James Kevin Chipman, Jesús del Mazo, Bettina Grasl-Kraupp, Christer Hogstrand, Jean-Charles Leblanc, Elsa Nielsen, Evangelia Ntzani, Annette Petersen, Salomon Sand, Tanja Schwerdtle, Christiane Vleminckx, Heather Wallace, Sven Daenicke, Carlo Stefano Nebbia, Isabelle P Oswald, Elena Rovesti, Hans Steinkellner and Laurentius (Ron) Hoogenboom

Abstract

In 2018, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. A no observed adverse effect level (NOAEL) of 1 mg/kg feed was established for pigs. In poultry a NOAEL of 20 mg/kg feed and in horses a reference point for adverse animal health effect of 8.8 mg/kg feed was established, referred to as NOAEL. The European Commission (EC) requested EFSA to review the information regarding the toxicity of fumonisins for pigs, poultry and horses and to revise, if necessary, the established NOAELs. The EFSA CONTAM Panel considered that the term reference point (RP) for adverse animal health effects better reflects the uncertainties in the available studies. New evidence which had become available since the previous opinion allowed to revise an RP for adverse animal health effects for poultry from 20 mg/kg to 1 mg/kg feed (based on a LOAEL of 2.5 mg/kg feed for reduced intestinal crypt depth) and for horses from 8.8 to 1.0 mg/kg feed (based on case studies on equine leukoencephalomalacia (ELEM)). For pigs, the previously established NOAEL was confirmed as no further studies suitable for deriving an RP for adverse animal health effects could be identified. Based on exposure estimates performed in the previous opinion, the risk of adverse health effects of feeds containing FB1-3 was considered a concern for poultry, when taking into account the RP of 1 mg/kg feed for intestinal effects. For horses and other solipeds, the risk is considered low, although a large uncertainty associated with exposure was identified. The same conclusions apply to the sum of FB1-3 and their hidden forms.

© 2022 Wiley-VCH Verlag GmbH & Co. KgaA on behalf of the European Food Safety Authority.

Keywords: fumonisins, exposure, toxicity, animal health risk assessment, horses, poultry, pigs

Requestor: European Commission Question number: EFSA-Q-2021-00696 Correspondence: feedco@efsa.europa.eu

www.efsa.europa.eu/efsajournal

EFSA Journal 2022;20(8):7534

DON – EFSA Update Dec 15th, 2022

New evidence has become available since the previous opinion allowing to revise the RP* for adverse animal **health effects in broiler chickens** and **turkeys** of resp. 5 and 7 mg/kg to **0.6 mg/kg**** in feed

Based on a LOAEL*** of resp 1.7 and 1.9 mg/kg for *decreased villus height and histological damage*

84 *Reference Point **1 mg/kg: is 1 ppm ***LOAEL: Lowest Observed Adverse Effect Level

SCIENTIFIC OPINION

efsa JOURNAL

ADOPTED: 15 December 2022

doi: 10.2903/j.efsa.2023.7806

Assessment of information as regards the toxicity of deoxynivalenol for horses and poultry

EFSA Panel on Contaminants in the Food Chain (CONTAM), Dieter Schrenk, Margherita Bignami, Laurent Bodin, James Kevin Chipman Jesús del Mazo, Bettina Grasl-Kraupp, Christer Hogstrand, Jean-Charles Leblanc, Elsa Nielsen, Evangelia Ntzani, Annette Petersen, Salomon Sand, Tanja Schwerdtle, Christiane Vleminckx, Heather Wallace, Sven Dänicke, Carlo Stefano Nebbia, Isabelle P Oswald, Elena Rovesti, Hans Steinkellner and Laurentius (Ron) Hoogenboom

Abstract

In 2017, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks for animal health related to the presence of deoxynivalenol (DON) and its acetylated and modified forms in food and feed. No observed adverse effect levels (NOAELs) and lowest observed adverse effect levels (LOAELs) were derived for different animal species. For horses, an NOAEL of 36 mg DON/kg feed was established, the highest concentration tested and not showing adverse effects. For poultry, an NOAEL of 5 mg DON/kg feed for broiler chickens and laying hens, and an NOAEL of 7 mg DON/kg feed for ducks and turkeys was derived. The European Commission requested EFSA to review the information regarding the toxicity of DON for horses and poultry and to revise, if necessary, the established reference points (RPs). Adverse effect levels of 1.9 and 1.7 mg DON/kg feed for, respectively, broiler chickens and turkeys were derived from reassessment of existing studies and newly available literature, showing that DON causes effects on the intestines, in particular the lejunum, with a decreased villus height but also histological damage. An RP for adverse animal health effects of 0.6 mg/kg feed for broiler chickens and turkeys, respectively, was established. For horses, an adverse effect level of 5.6 mg DON/kg feed was established from studies showing reduced feed intake, with an RP for adverse animal health effects of 3.5 mg/kg feed. For ducks and laying hens, RPs remain unchanged. Based on mean and P95 (UB) exposure estimates performed in the previous Opinion, the risk of adverse health effects of feeds containing DON was considered a potential concern for broiler chickens and turkeys. For horses, the risk for adverse health effects from feed containing DON is low.

© 2023 European Food Safety Authority. EFSA Journal published by Wiley-VCH GmbH on behalf of European Food Safety Authority.

Keywords: deoxynivalenol, DON, exposure, toxicity, animal health risk assessment, horses, poultry

Requestor: European Commission Question number: EFSA-Q-2021-00712 Correspondence: feedco@efsa.europa.eu

www.efsa.europa.eu/efsajournal

Take Home Messages

High abundance of mycotoxins in European poultry Finished Feed (pFF)

> Levels exceeding EFSA RP* for FUM and/or DON in at least 25% of all EU pFF samples**

Natural Mycotoxins Levels Cause:

- (Sub)clinical effects (predisposing factor)
- Negatively affect intestinal homeostasis
 - ↑ inflammatory signalling, leaky gut
 ↑ animal susceptibility to enteric infectious diseases
- Impair vaccine efficacy in poultry (ROI?)
- Impair intestinal and immune-function
- Transfer via egg:
 - Egg safety ↓
 - Hatchability ↓
 - Quality DOC \downarrow

'Energy' waste!

Prevention

Mycotoxins are coming from the field and unproper storage

Initially 40% of material is rejected at the farm level

So	il

Inoculum Agro Techn. Tilling Fungiside Protection Triazoles

Storage Adequate storage condition Tem. C, H2O, cleanest

Jöhr (2010) presented at STDF/LNV/World Bank Workshop, Den Haag

Conditions Facilitating Mycotoxin Production

Mycotoxin-producing mould species and their optimal growth conditions

Dro bor		Mycotoxin	Mould	Temperature Range (°C)	Optimal Temperature (°C)	Water Activity (a _w)	pН
Fusari	um	AFs	A. flavus A. parasiticus	10–48 12–42	33 32	0.80–0.99 0.80–0.99	2–10 3–8
		OTA	A. ochraceus P. verrucosum A. niger	10–40 0–31 6–47	37 20 36	0.80 0.86 0.77–0.92	3–10 6–7 2–6.5
Pre & Post-	Post-	FUM	F. verticilloides F. proliferatum	2.5–37 5–37	25	0.90–0.99	2.4–3
narvest	harvest	ZEN	F. culmorum	0-31	21	0.96	3–9
Aspergillus	Aspergillus	DON	F. graminearum	5–37	25	0.99	2.4–3

Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage; Springer: New York, NY, USA, 2009

Prevention of mycotoxin contamination field and manufacture GAP & GMA

GAP Good Agriculture Practices

- 1. Hybrid selection, resistant to toxigenic moulds, insects, and drought;
- 2. Biological control, anti-pest and anti-fungal treatments;
- 3. Irrigation;
- 4. Crop rotation;
- 5. Herbicide application; etc.

GMP Good Manufacture Practices

- 1. Drying and storage practices both raw materials and final products
- 2. Water activity of the cereals less than 0.65, corresponds to a moisture level of 15 percent
- 3. Reducing levels of mycotoxins in the feed supply chain
- 4. Sorting, segregation, restoration, withdrawal
- 5. Hygiene, harvested crops are piled before drying and cleaning
- 6. Key parts of GMP include hazard analysis at critical control points

Why do you need Mycofix®

Agriculturally relevant mycotoxins – diversity in structures Need for a toolbox of different detoxification strategies

Scientifically described approaches

Binding / adsorption of mycotoxins

- Products referred to as "binder", "adsorbents", "enterosorbents", etc.)
- Organic (microbial) or inorganic (mostly clay)

Enzymatic detoxification (biotransformation)

 Microorganisms/enzymes which transform or degrade mycotoxins to less – or non-toxic metabolites

Bioprotection

• Protection of vulnerable organs or strengthening of immune system

Conventional Binding Test: 200 ppb AFB₁ and 2 kg/tonne "binder"

content!

Classified Personnel Information

Stringent evaluation of binding – testing scheme

Stringent EURL in vitro method better reflects in vivo situation

EUROPEAN COMMISSION JOINT RESEARCH CENTRE Institute for Reference Materials and Measurements (Geel) Standards for Food Bioscience Unit European Union Reference Laboratory for Feed Additives - Authorisation

Adsorption (elimination of toxins)

EU authorized bentonite enables the elimination of the toxin by adsorption

Adsorption of deoxynivalenol – commercially available products on the market (1000 ppb - by 2kg/ton binder)

Figure 3. Adsorption capacity of mycotoxin binder products of different origins at pH 3.0 and pH 6.5 on deoxynivalenol (DON). M: Mineral; OC: Organoclay; Y: Yeast. *Murugesan, et al 2015, Poultry Science*

Adsorption of FUM: depends on pH

Adsorption of FUM is **reversible** in gastrointestinal tract!

Enzymatic detoxification ("Biotransformation") is a very specific, irreversible detoxification method

Non-toxic metabolite

Non-toxic metabolite

- ✓ Specific & direct effect
- ✓ Irreversible
- ✓ Safe
- \checkmark Not interfering analytical MTXs method in feed

Biomin[®] BBSH[®] 797 – for the deactivation of trichothecenes

German collection of microorganisms and cell cultures

Biomin[®] BBSH[®] 797

- Genus nov. (formerly *Eubacterium*) sp. nov. BBSH 797
- DSM 11798
- Live organism
- Produces de-epoxidases which open the toxic epoxide ring of trichothecenes (e.g. DON)

Biomin[®] BBSH[®] 797 – for the deactivation of trichothecenes

50

Biomin[®] BBSH[®] 797

The microorganism that biotransforms trichothecenes into harmless metabolites.

EU authorized Biomin[®] BBSH[®] 797 significantly reduces deoxynivalenol (DON) concentration in serum.

FUM*zyme*[®] - for the deactivation of fumonisins

FUMzyme[®]

The first-ever purified enzyme to degrade fumonisins specifically and irreversibly into nontoxic metabolites.

Detoxifies fumonisins (FUM), proven by the decrease of the sphinganine/sphingosine ratio (Sa/So) biomarker.


```
FUMzyme®
```

Biological constituent – for the deactivation of zearalenone

Biological constituent

The yeast strain specifically detoxifies zearalenone into nontoxic substances.

Proven zearalenone (ZEN) degradation into non-estrogenic metabolites by Mycofix[®] 5.E tested in the E-screen assay.

Biomin[®] Bioprotection Mix

An innovative blend of natural ingredients

- Provides immune and liver support
- Protects the animal from the toxic effects caused by mycotoxins by supporting proliferation of immune cells
- Supports the intestinal barrier and the tight junctions from the negative effects of mycotoxins

Mycofix[®] 5.E

The all-in-one mycotoxin risk management solution for the most complete protection

Mycofix[®] product line – The absolute protection against mycotoxins

Biotransformation

A unique combination of patented specific enzymes and biological components converts mycotoxins into nontoxic, environmentally-safe metabolites in the digestive tract of animals.

FUM*zyme*[®] - purified enzyme degrades FUM

Biomin[®] BBSH[®] 797 DSM 11798 degrades trichothecenes

Biological constituent deactivation of zearalenone

Synergistic blend of minerals

Adsorbs Aflatoxins, Ergot alkaloids and endotoxins

Biomin[®] Bioprotection Mix

Supports the liver, immune system and intestinal integrity

Mycofix[®] product line

Strategy	Mycotoxin Challenge	Mycofix Secure	Mycofix PRO-tect	Mycofix Select	Mycofix Plus
Bio trans formation	Zearalenone				
	Trichothecenes				
	Fumonisins				
Bio protection	GIT integrity				
	Immune support				
	Protection of liver				
Adsorption	Aflatoxins				
	Ergot alkaloids				
	Endotoxins				
	Adsorbable Mycotoxins				
EU authorization – A benchmark for quality!

- ✓ 1st time an official authority imposes demanding and rigid requirements on identity, safety and efficacy of a mycotoxindeactivation products
- ✓ The registration demonstrates the capacity of such products in a standardized and fair process.
- ✓ Even outside of the EU
- More than **500** binders on market, **none** granted EFSA or FDA authorizations.

Just 3 ingredients have it: Bentonite, Biomin[®] BBSH[®] 797, FUMzyme[®]

dsm-firmenich 🐽

Take Home Messages

Mycotoxins are highly prevalent in our feed

Check MTXs in Feed*!

110

High synergism among mycotoxins could lead to (sub)clinical processes

Put it in your Differential Diagnosis

EU (EFSA) guidance levels of mycotoxins in animal feed are getting lower

Use an EFSA approved Mycotoxin-deactivator

Approval of first U.S. mycotoxin degrading enzyme

ANIMAL NUTRITION AND HEALTH

FDA approved

DSM

European Food Safety Authority

Mycofi

Effective mycotoxin risk management program should be the base for **PROTECT**ing **production animals**

dsm-firmenich

We bring progress to life™

dsm-firmenich 🐽